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1. Introduction

In this paper we continue the study of geometry of causal diamonds initiated in [1] and [2].

The focus of the present study is the irreversible behavior of the volume of a causal diamond

in space-times asymptotic to de Sitter space. The causal diamonds play an important

role in various recent classical and quantum investigations of cosmologies with positive

cosmological constant (see [3] and [4] and references therein). In fact, the diamond appears

rather naturally as the region accessible for experiments made by a hypothetical observer

moving along a time-like geodesic. Imagine an observer that makes experiments by sending

the light rays and detecting the signals that come back and has only a finite duration time

τ for his/her experiments. Then the region of space-time that can be probed by this type

of experiments is exactly the causal diamond associated with the observer. Geometrically,

as was demonstrated in [1] and [2], the volume of a causal diamond encodes information

on the curvature of the space-time. Moreover, this information is inherently irreversible:

the differences of the space-time geometry inside the diamond from de Sitter geometry

inevitably disappear as cosmological time progresses.

There are several indications in the literature that the cosmological evolution with

positive cosmological constant is irreversible. The most straightforward way is to associate1

1I thank G. Gibbons for suggesting this point.
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this to the irreversible growth of the cosmological horizon [5]. The entropy associated to

the horizon is then non-decreasing in agreement with the laws of thermodynamics.

In a different development one considers a dual holographic description of de Sitter

space-time in terms of a conformal field theory (CFT) [6] defined on a space-like boundary

of the space-time. From the point of view of quantum CFT it is natural to define a

function (known as C-function) which changes monotonically along the RG trajectories.

In the dual description such a C-function is defined in terms of the space-time metric and

its derivatives. One then shows that, under suitable energy conditions one has to impose

on matter fields, the C-function changes monotonically with cosmological time [6].

In the present paper we suggest yet another manifestation of the irreversible cosmo-

logical evolution. We show that the volume of a causal diamond grows monotonically with

cosmological time. The maximal value it approaches at future space-like infinity is that of

volume in maximally symmetric de Sitter space-time.

2. The result

We consider an observer that follows a timelike geodesic γ in metric which is not exactly

but only asymptotically de-Sitter, in the limit that his/her own proper time tq → ∞. We

shall study the volume V (τ, tq) of the causal diamond İ+(p)∩ İ−(q) where p and q lie on γ

in the limit when both tp, tq → ∞ while τ = tq − tp is kept fixed. Thus both points p and

q tend to future spacelike infinity I+ while the duration of the diamond τ is kept fixed.

The entire diamond is in the asymptotic region and the volume of the diamond depends

on the asymptotic geometry. In the limit when tq → ∞ the point q on the geodesic γ

approaches the point q+ of intersection of geodesic γ and the future space-like infinity I+.

The asymptotic metric in 4d geodesic coordinates takes the form

ds2 = −dt2 + e2tg
(0)
ij dxidxj , (2.1)

where t is the cosmological time and g
(0)
ij (x) is an arbitrary 3d metric defined on future

infinity of the 4-dimensional asymptotically de Sitter space-time. We skip the subleading

terms, defined as a series in powers of e−t, in (2.1). Throughout the paper we set the de

Sitter radius l = 1.

A special role is played by the maximally symmetric de Sitter space-time.2 This space-

time is characterized by the fact that, in global coordinates, the future infinity I+ is 3d

round sphere S3,

ds2
dS = −dt2 + cosh2(t)

(

dχ2 + sin2 χ(dθ2 + sin2 θdφ2)
)

. (2.2)

There are however two other forms of the metric in the coordinates which cover only a part

of the space-time

ds2
dS = −dt2 + exp(2t)

(

dχ2 + χ2(dθ2 + sin2 θdφ2)
)

(2.3)

2Below we call it “pure de Sitter space-time”.
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and

ds2
dS = −dt2 + sinh2(t)

(

dχ2 + sinh2 χ(dθ2 + sin2 θdφ2)
)

. (2.4)

In all three cases the metric g
(0)
ij on asymptotic boundary is of constant curvature and it

satisfies condition R
(0)
ij = 1

3g
(0)
ij R(0). Notice that not all 4d metrics which approach 3d

manifold of constant curvature at future infinity are globally identical to pure de Sitter

space-time.

The expansion of the volume V (τ, tq) in powers of e−tq is then a expansion in curvature

of 3-dimensional Euclidean metric g
(0)
ij defined on I+ at point q+

V (τ, tq) = a0(τ) + a2(τ)R(0)e
−2tq +

(

c4(τ)∇2R(0) + a4(τ)(R
(0)
ij )2 + b4(τ)R2

(0)

)

e−4tq , (2.5)

where the curvature is taken at point q+. There are no combinations of curvature which

are odd in derivatives. This explains why the coefficients in front of odd powers of e−tq

in (2.5) vanish.

One can easily get some constraints on the coefficients in (2.5). If the spacetime is

the pure de Sitter spacetime, then the volume of the causal diamond does not depend on

where this diamond is located. This is a direct consequence of the large symmetry group

in de Sitter space-time. It follows that the volume VdS(τ, tq) does not depend on tq. The

direct calculation performed for metric in any form (2.2), (2.3) or (2.4) gives

VdS(τ, tq) = v(τ) ≡ 4

3
π
(

2 ln cosh
τ

2
− tanh2 τ

2

)

. (2.6)

In this case all terms in the expansion (2.5) except the first should vanish. For metric (2.2)

the spacelike infinity I+ is 3-sphere with curvature R
(0)
ij = 2g

(0)
ij , R(0) = 6. Thus, we get that

a0(τ) = v(τ) , a2(τ) = 0 , b4(τ) = −1/3a4(τ) , (2.7)

where v(τ) is the volume of the diamond in pure de Sitter spacetime. That coefficient a2(τ)

identically vanishes was checked explicitly in [2]. Thus we have that

V (τ, tq) = v(τ) +

(

c4(τ)∇2R(0) + a4(τ)

(

(R
(0)
ij )2 − 1

3
R2

(0)

))

e−4tq + . . . . (2.8)

The functions a4(τ) and c4(τ) can not be determined from general arguments and one has

to perform a direct calculation.

We use in I+ the Riemann coordinates centered at point q+ and directly compute

the volume. The calculation shows that c4(τ) = 0 identically and that a4(τ) = −w(τ) is

entirely negative function of τ ,

V (τ, tq) = v(τ) − w(τ)

(

R
(0)
ij − 1

3
g
(0)
ij R(0)

)2

e−4tq + . . . . (2.9)

Thus, the cosmological evolution defines a volume flow of a causal diamond so that the

volume is monotonically increasing function of cosmological time. The asymptotic value of

– 3 –
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the volume is that of in pure de Sitter spacetime. Moreover, the flow vanishes (to leading

order) if future infinity I+ is 3-manifold of constant curvature.

In the presence of 4d matter the monotonic behavior of the volume of a causal diamond

persists although the deviations from the pure de Sitter result show up already in the

second order in e−tq . This is also obvious from the analysis similar to (2.5): one can use

the asymptotic values of the matter fields to construct new invariants that may appear in

the expansion of the volume together with the curvature invariants. For a massless scalar

field which takes value φ0(x) on I+ the asymptotic expansion of the volume takes the form

V (τ, tq) = v(τ) − (2πGN )c(τ)(∇φ0)
2e−2tq + . . . , (2.10)

where GN is 4d Newton’s constant, c(τ) is positive function of τ and (∇φ0)
2 = gij

(0)∂iφ0∂jφ0.

Below we present a mathematical proof of (2.9) and (2.10).

3. Asymptotic metric and the Riemann coordinates

We choose a time coordinate η = e−t, η ≥ 0, η = 0 at future infinity. Note that we are

using a convention in which η is positive and decreases towards future timelike infinity I+.

The asymptotic expansion of cosmological 4-metric with positive cosmological constant

was first considered by Starobinsky [7]. It goes similarly to the expansion in asymptotically

anti-de Sitter case, see [8 – 10] for more detail on the anti-de Sitter case. The analytic

continuation to the de Sitter case was considered in [11, 14] and [2]. The 4-dimensional

metric takes the form

ds2 =
1

η2

(

−dη2 + gij(x, η)dxidxj
)

,

g(x, η) = g(0)(x) + g(2)(x)η2 + g(3)(x)η3 + g(4)(x)η4 + . . . , (3.1)

where {xi} are coordinates on I+. The coefficients in the decomposition (3.1) satisfy

relations [7]

g
(2)
ij = R

(0)
ij − 1

4
R(0)g

(0)
ij , Tr g(3) = 0 , ∇jg

(3)
ij = 0 , Tr g(4) =

1

4
Tr g2

(2) , (3.2)

where the covariant derivatives and trace are determined with respect to metric g
(0)
ij (x)

defined on 3-surface I+.

Now on the surface I+ we choose the Riemann coordinates {xi} such that xi = 0

correspond to point q+. Locally, around point q+, it is more convenient to use the “spherical

coordinates” (r, θa) on I+,

xi = rni(θ) , i = 1, 2, 3 ni(θ)ni(θ) = 1 , (3.3)

where {θa, a = 1, 2} are the angle coordinates on S2. We then develop a double expansion

of metric both in powers of η and r2 = xixi

g
(0)
ij = g

(0,0)
ij + g

(0,2)
ij r2 + g

(0,3)
ij r3 + g

(0,4)
ij r4 + . . . ,

g(2) = g(2,0) + g(2,1)r + g(2,2)r2 + . . . ,

g(3) = g(3,0) + g(3,1)r + . . . ,

g(4) = g(4,0) + . . . , (3.4)
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where we keep terms up to 4th order in the total power of η and r. In the Riemann

coordinates we have that [12]

g
(0,0)
ij = δij , (3.5)

g
(0,2)
ij = −1

3
Rikjnnknn ,

g
(0,3)
ij = −1

6
Rikjn,ln

knnnl ,

g
(0,4)
ij =

(

− 1

20
Rikjn,lm +

2

45
R ρ

kin Rljmρ

)

nknnnlnm ,

g
(2,0)
ij = (Rij −

1

4
Rδij) ,

g
(2,1)
ij = ∇k(Rij −

1

4
Rgij)n

k ,

g
(2,2)
ij =

(

1

2
∇k∇n

(

Rij−
1

4
Rgij

)

− 1

6
Rρ

kin

(

Rρj−
1

4
Rgρj

)

− 1

6
Rρ

kjn

(

Rρi−
1

4
Rgρi

))

nknn .

Expanding (3.2) in powers of r we get the relations

Tr g(3,0) = Tr g(3,1) = 0 , Tr g(4,0) =
1

4
Tr g2

(2,0) . (3.6)

4. The future and past light-cones

We choose the point q to have coordinates (η = ǫ, 0, 0, 0) and point p to have coordinates

(η = N + ǫ, 0, 0, 0), where N = ǫ(eτ − 1) and τ is the geodesic distance between points p

and q, ǫ = e−tq .

In coordinates (η, r, θa) the equation which determines the past light-cone İ−(q), r =

r+(η), θa = const is

dr+(η)

dη
=

1√
gnn

, gnn = gij(x, η)ninj , r+(η = ǫ) = 0 . (4.1)

We find that

1√
gnn

= 1− η2

2
(g(2,0)

nn +g(2,1)
nn r+g(2,2)

nn r2) − η3

2
(g(3,0)

nn +g(3,1)
nn r)− η4

2
g(4,0)
nn +

3

8
η4(g(2,0)

nn )2 + . . .

where we introduced notations g
(k,p)
nn = g

(k,p)
ij ninj. The solution of equation (4.1) including

the terms up to 5th order takes the form

r+(η) = η − ǫ +
ǫ3

6
g(2,0)
nn +

(

g
(3,0)
nn

8
− g

(2,1)
nn

24

)

ǫ4 +

(

g
(2,2)
nn

60
+

g
(4,0)
nn

10
− g

(3,1)
nn

40
− 3

40
(g(2,0)

nn )2
)

ǫ5

−η3

6
(g(2,0)

nn − ǫg(2,1)
nn + ǫ2g(2,2)

nn ) − η4

8
(g(3,0)

nn + g(2,1)
nn − ǫg(3,1)

nn − 2ǫg(2,2)
nn )

−η5

10

(

g(2,2)
nn + g(4,0)

nn + g(3,1)
nn − 3

4
(g(2,0)

nn )2
)

+ . . . . (4.2)
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Similarly, the equation that determines the light-cone İ+(p), r = r−(η), θa = const

dr−(η)

dη
= − 1√

gnn
, r−(η = N + ǫ) = 0 . (4.3)

Introducing ǭ = N + ǫ we have that

r−(η) = ǭ − η − ǭ3

6
g(2,0)
nn −

(

g
(3,0)
nn

8
+

g
(2,1)
nn

24

)

ǭ4 −
(

g
(2,2)
nn

60
+

g
(4,0)
nn

10
+

g
(3,1)
nn

40
− 3

40
(g(2,0)

nn )2
)

ǭ5

+
η3

6
(g(2,0)

nn + ǭg(2,1)
nn + ǭ2g(2,2)

nn ) +
η4

8
(g(3,0)

nn − g(2,1)
nn + ǭg(3,1)

nn − 2ǭg(2,2)
nn )

+
η5

10

(

g(2,2)
nn + g(4,0)

nn − g(3,1)
nn − 3

4
(g(2,0)

nn )2
)

+ . . . . (4.4)

Two light-cones, İ+(p) and İ−(q), intersect at

η = ηc ≡
N

2
+ ǫ − 1

8
g(2,0)
nn N2

(

N

2
+ ǫ

)

+ O(ǫ4) . (4.5)

5. The volume

The volume of the causal diamond İ+(p) ∩ İ−(q) is

V (ǫ, τ) =

∫

S2

(

∫ ηc

ǫ

dη

η4

∫ r+(η)

0
dr r2

√

det g +

∫ N+ǫ

ηc

dη

η4

∫ r
−

(η)

0
dr r2

√

det g

)

, (5.1)

where
∫

S2
is the integral over spherical angles {θa, a = 1, 2}. With the usual choice of

angles
∫

S2
=
∫ π

0 dθ sin θ
∫ 2π

0 dφ.

Then we get for the past light-cone of point q

∫ r+(η)

0
dr r2

√

det g =
1

3
(η − ǫ)3 + S+

5 + S+
6 + S+

7 , (5.2)

where the exact form of the coefficients S+
5 , S+

6 is given in appendix A. The coefficient S+
7

takes the form

S+
7 =

4
∑

n=0

h+
n ηn(ǫ − η)7−n , (5.3)

where h+
n , n = 0, 1, 2, 3, 4 are presented in appendix A.

For the future light-cone of point p we have that

∫ r
−

(η)

0
dr r2

√

det g =
1

3
(ǭ − η)3 + S−

5 + S−
6 + S−

7 . (5.4)

The exact form of S−
5 and S−

6 can be found in appendix A. Using exact expressions of

appendix A we notice a property

S−
5 (ǭ, η) = −S+

5 (ǫ = ǭ, η) . (5.5)

– 6 –
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For the term S−
7 we find

S−
7 =

4
∑

n=0

h−
n ηn(ǭ − η)7−n , (5.6)

where h−
n , n = 0, 1, 2, 3, 4 are given by relation (A.16). Using the S2 integrals calculated

in appendix B, we get for the integrated quantities

∫

S2

h+
4 = 0 , (5.7)

∫

S2

h+
3 = −B

3
+

5C

48
,

∫

S2

h+
2 =

4C

45
− B

3
,

∫

S2

h+
1 =

5C

144
− B

6
+

A

120
,

∫

S2

h+
0 = −113B

3150
+

227C

37800
+

A

280
,

where we introduced A ≡ π∇2R, B ≡ πR2
ij, C ≡ πR2.

We notice that since
∫

S2
g
(3,1)
nn = 0 one has a relation

∫

S2

h−
n = −

∫

S2

h+
n , n = 0, 1, 2, 3, 4 . (5.8)

Now we are in a position to calculate the volume of the causal diamond. We focus on the

term proportional to ǫ4 since all other terms, proportional to ǫ2 and ǫ3 vanish. First, we

neglect the modification (4.5) and assume that two light-cones intersect at ηc = N
2 + ǫ. We

then get

V
(4)
1 =

∫ N
2

+ǫ

ǫ

dη

η4
S+

7 (ǫ, η) +

∫ N+ǫ

N
2

+ǫ

dη

η4
S−

7 (ǭ, η) =

4
∑

n=0

h+
n In(K)ǫ4 , (5.9)

where

In(K) =

∫ K

1
dx(1 − x)7−n

(

1

x4−n
+

1

(x − 2K)4−n

)

(5.10)

and we introduced K = N
2ǫ

+ 1 = eτ+1
2 . There are useful relations between functions In(K)

I2(K) = −1

3
I1(K) − (1 − K)6

3K2
,

I3(K) = −1

5
I2(K) ,

I1(K) = −3

7
I0(K) . (5.11)

– 7 –
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Now we can take into account the modification (4.5) of the intersection point of the two

light cones,

ηc =
N

2
+ ǫ + ∆ηc , ∆ηc = −1

2
g(2,0)
nn K(K − 1)2ǫ3 . (5.12)

We get the contribution to the volume due to this modification

V
(4)
2 =

∫

S2

∫ N
2

+ǫ+ηc

N
2

+ǫ

dη

η4

(

(η − ǫ)3

3
− (ǭ − η)3

3
+

1

2
g(2,0)
nn η[(η − ǫ)4 + (ǭ − η)4] + . . .

)

= −1

4

∫

S2

(g(2,0)
nn )2

(K − 1)6

K2
ǫ4 + O(ǫ5) . (5.13)

The total volume then

V (4) = V
(4)
1 + V

(4)
2 = ǫ4

(

2(K − 1)6

135K2
+

4

4725
I0(K)

)

(C − 3B) . (5.14)

Notice that terms proportional to A = ∇2R cancel each other. It is crucial for estab-

lishing the monotonic behavior of the volume because the term ∇2R is not sign-definite.

On the other hand, one has that

(C − 3B) = π(−3(R
(0)
ij )2 + R2

(0)) = −3π

(

R
(0)
ij − 1

3
R(0)g

(0)
ij

)2

.

The integral I0(K) is calculated explicitly. Since K = eτ+1
2 one has that

(

2(K − 1)6

135K2
+

4

4725
I0(K)

)

≡ 1

3π
w(τ)

=
2

135

(

1−tanh
τ

2

)−4( 1

15
tanh2 τ

2

(

tanh4 τ

2
+12 tanh2 τ

2
+

6

cosh4 τ
2

+
53

cosh2 τ
2

+251

)

−2

(

1+tanh
τ

2

)4

ln

(

1+tanh
τ

2

)

−2

(

1−tanh
τ

2

)4

ln

(

1−tanh
τ

2

))

. (5.15)

The function w(τ) is positive and rapidly growing with τ . Finally, we get for the volume

of the causal diamond

V (τ, tq) = v(τ) − w(τ)

(

R
(0)
ij − 1

3
R(0)g

(0)
ij

)2

e−4tq , (5.16)

where v(τ) is the volume in maximally symmetric de Sitter spacetime. Thus, we get that

dV (τ, tq)

dtq
= 4w(τ)

(

R
(0)
ij − 1

3
R(0)g

(0)
ij

)2

e−4tq > 0 . (5.17)

So that the volume of the causal diamond monotonically grows. The derivative (5.17)

vanishes if curvature of I+ satisfies relation (R
(0)
ij = 1

3R(0)g
(0)
ij ). By Bianchi identities this

implies that R(0) = const so that I+ is 3-manifold of constant curvature in this case.

– 8 –
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6. Coupling to massless scalar field

In the presence of matter fields the behavior (5.16) changes in that the correction term to

the pure de Sitter result appears now at a different power of e−t. In order to illustrate this

point we consider a massless scalar field described by the field equation

1√
G

∂µ(
√

GGµν∂νφ) = 0 , (6.1)

where Gµν is 4-metric. The Einstein equations take the form

Rµν = 3Gµν + 8πGN∂µφ∂νφ . (6.2)

For the 4-metric in the form (3.1), introducing a coordinate ρ = η2, the Einstein equations

reduce to a system of equations [10]

ρ[2g′′−2g′g−1g′+Tr (g−1g′)g′]ij+Rij(g)−(d−2)g′ij−Tr (g−1g′)gij = 8πGN∂iφ∂jφ ,

∇i Tr (g−1g′) −∇jg′ij = 8πGN∂ρφ∂iφ ,

Tr (g−1g′′) − 1

2
Tr (g−1g′g−1g′) = 16πGN∂ρφ∂ρφ , (6.3)

where differentiation with respect to ρ is denoted with a prime, ∇i is the covariant derivative

constructed from the metric g, and Rij(g) is the Ricci tensor of g.

The asymptotic expansion for the scalar field and the 4-metric reads

φ(ρ, x) = φ(0)(x) + φ(2)(x)ρ + . . . , (6.4)

gij(ρ, x) = g
(0)
ij (x) + g

(2)
ij (x)ρ + . . . . (6.5)

Inserting this into the first equation in (6.3) we find that

g
(2)
ij =

(

R
(0)
ij − 1

4
g
(0)
ij R(0)

)

− 8πGN

(

∂iφ
(0)∂jφ

(0) − 1

4
gij

(0)∂iφ
(0)∂jφ

(0)

)

(6.6)

and, hence, for the trace

Tr g(2) =
1

4
R(0) − 2πGNgij

(0)∂iφ
(0)∂jφ

(0) . (6.7)

Before computing the volume of the causal diamond we notice that all our expressions

obtained in the previous section and in appendix A and that operate with coefficients in

the expansion (3.4) and do not refer to the precise form of the coefficients are also valid

in the case when the bulk gravity couples to matter. We also note that regardless to the

precise form of the coefficient g
(2)
ij we have that

∫

S2

g(2,0)
nn =

1

3

∫

S2

Tr g(2,0) . (6.8)

The volume can be computed in the same way as in the previous section. The only

difference is that now the term of order ǫ2 does not identically vanish. We get that

V (τ, tq) = v(τ) +

∫

S2

(

∫ N
2

+ǫ

ǫ

dη

η4
S+

5 (ǫ, η) +

∫ N+ǫ

N
2

+ǫ

dη

η4
S−

5 (ǭ, η)

)

+ . . . . (6.9)
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Inserting here the exact expressions for S+
5 and S−

5 we arrive at the expression

V (τ, ǫ) = v(τ)+

(

1

2

∫

S2

g(2,0)
nn J1(τ)+

(

1

10

∫

S2

Tr g(0,2) − 1

6

∫

S2

g(2,0)
nn

)

J2(τ)

)

ǫ2+. . . , (6.10)

where we introduced functions

J1(τ) =

∫ K

1
dx(x − 1)4

(

1

x3
+

1

(x − 2K)3

)

(6.11)

and

J2(τ) =

∫ K

1
dx(x − 1)5

(

1

x4
+

1

(x − 2K)4

)

, (6.12)

where K = eτ+1
2 . We note a relation between two functions

J2(τ) =
5

3
J1(τ) . (6.13)

Taking into account that g
(0,2)
ij = −1

3Rikjnnknn we find

∫

S2

Tr g(0,2) = −4π

9
R(0) ,

∫

S2

g(2,0)
nn =

4π

3

(

1

4
R(0) − 2πGN (∇(0)φ(0))

2

)

, (6.14)

where all quantities are calculated at point q+ on I+.

Thus, we obtain for the volume

V (τ, tq) = v(τ) − 8π

27
J1(τ)(2πGN )(∇(0)φ(0))

2e−2tq + . . . . (6.15)

The function J1(τ) is positive and rapidly growing with τ ,

J1(τ) =
τ6

320
+

τ7

320
+

19

17920
τ8 + O(τ9) , τ ≪ 1 (6.16)

J1(τ) =

(

17

4
− 6 ln 2

)

e2τ − 3

2
eτ + O(1) , τ ≫ 1 (6.17)

Clearly, the volume (6.15) is monotonically growing. It reaches asymptotically the maximal

value that is the volume of the diamond in pure de Sitter space-time. The volume flow (6.15)

vanishes everywhere in I+ if and only if the scalar field takes a constant asymptotic value

φ(0) on I+.

7. Two conjectures

It is reasonable to ask whether the volume of a causal diamond is globally monotonic or,

rather, it is monotonic only asymptotically. It is known [13] (see also [14]) that there exists

a small perturbation of pure de Sitter space-time that does not change the global structure
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of the space-time. It makes a small deformation of past and future infinities I− and I+.

Near the past infinity our analysis is valid by replacing t by −t. So that the volume is

monotonically decreasing near I−. Thus in a space-time which is globally asymptotically

de Sitter, to the past and future, I− and I+, the volume of a causal diamond is not globally

monotonic. On the other hand, a positive energy distribution generically causes a formation

of a initial singularity. The space-time near the past infinity is then no more asymptotically

de Sitter. We expect that in space-times of this type the volume of the diamond is globally

monotonic as a manifestation of the irreversibility of the cosmological evolution with a

positive cosmological constant. A detail analysis, however, is yet to be done.

Irrespective of whether or not the volume is globally monotonic it is reasonable to

expect that the volume of a diamond in pure de Sitter space-time is the absolute max-

imum among all possible asymptotically de Sitter space-times. Thus we formulate two

conjectures:

1. The volume of a causal diamond in pure de Sitter space-time is the absolute maximum

in the class of vacuum asymptotically de Sitter metrics

V (τ, tq) ≤ VdS(τ) . (7.1)

2. The bound (7.1) is saturated for all diamonds of same duration τ if and only if the

space-time is pure de Sitter space-time.

A more work is needed to check these statements.

It should be noted that the assumption of an asymptotically de Sitter space-time at

t → ∞ is crucial for all results obtained in the paper. The only known generic alternative

behaviour is recollapse with the subsequent formation of a singularity. We do not expect

the volume of a diamond to be monotonic in this scenario although a detail analysis is

needed in order to specify the time evolution of the volume.
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A. Volume coefficients

Using the decomposition

√

det g = 1 +
r2

2
Tr g(0,2)+

r3

2
Tr g(0,3)+

r4

2
Tr g(0,4)+

1

2
η2(Tr g(2,0)+rTr g(2,1)+r2Tr g(2,2))

+
1

8
(r2Tr g(0,2) + η2Tr g(2,0))2 − r4

4
Tr (g(0,2)g(0,2))

−r2η2

2
Tr (g(0,2)g(2,0)) − η4

8
Tr (g(2,0)g(2,0)) + . . . (A.1)

we get

∫ r+(η)

0
dr r2

√

det g =
1

3
(η − ǫ)3 + S+

5 + S+
6 + S+

7 , (A.2)
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where

S+
5 =

1

6
(Tr g(2,0) − 3g(2,0)

nn )η2(η − ǫ)3 +
1

2
g(2,0)
nn η(η − ǫ)4 (A.3)

+

(

1

10
Tr g(0,2) − 1

6
g(2,0)
nn

)

(η − ǫ)5

S+
6 = −g

(3,0)
nn

2
ǫ3(η − ǫ)3 +

(

− g
(2,1)
nn

4
− 3

4
g(3,0)
nn +

Tr g(2,1)

8

)

ǫ2(η − ǫ)4 (A.4)

+

(

− g
(2,1)
nn

3
− g

(3,0)
nn

2
+

Tr g(2,1)

4

)

ǫ(η − ǫ)5

+

(

Tr g(2,1)

8
+

Tr g(0,3)

12
− g

(3,0)
nn

8
− g

(2,1)
nn

8

)

(η − ǫ)6

For the coefficient S+
7 we get a representation

S+
7 =

4
∑

n=0

h+
n ηn(ǫ − η)7−n (A.5)

h+
4 =

1

2
g(4,0)
nn − 5

8
(g(2,0)

nn )2 − 1

24
(Tr g(2,0))2 +

1

4
g(2,0)
nn Tr g(2,0) +

1

24
Tr (g(2,0)g(2,0)) (A.6)

h+
3 = −5

4
(g(2,0)

nn )2 +
1

4
g(2,0)
nn Tr g(2,0) + g(4,0)

nn − 1

4
g(3,1)
nn (A.7)

h+
2 =

1

4
g(2,0)
nn Tr g(0,2) − 7

6
(g(2,0)

nn )2 − 1

10
Tr g(2,2) +

1

10
Tr (g(0,2)g(2,0)) − 1

20
Tr g(2,0)Tr g(0,2)

+
1

6
g(2,2)
nn + g(4,0)

nn +
1

12
g(2,0)
nn Tr g(2,0) − 1

4
g(3,1)
nn (A.8)

h+
1 =

1

4
g(2,0)
nn Tr g(0,2) − 13

24
(g(2,0)

nn )2 +
1

12
g(2,2)
nn +

1

2
g(4,0)
nn − 1

8
g(3,1)
nn (A.9)

h+
0 = − 37

360
(g(2,0)

nn )2 − 1

56
(Tr g(0,2))2 +

1

28
Tr (g(0,2)g(0,2))

− 1

14
Tr g(0,4) +

1

60
g(2,2)
nn +

g
(4,0)
nn

10
+

1

12
g(2,0)
nn Tr g(0,2) − 1

40
g(3,1)
nn (A.10)

For the future cone of point p we have that

∫ r
−

(η)

0
dr r2

√

det g =
1

3
(ǭ − η)3 + S−

5 + S−
6 + S−

7 (A.11)

S−
5 = −1

6
(Tr g(2,0) − 3g(2,0)

nn )η2(η − ǭ)3 − 1

2
g(2,0)
nn η(η − ǭ)4 (A.12)

−
(

1

10
Tr g(0,2) − 1

6
g(2,0)
nn

)

(η − ǭ)5

S+
6 =

g
(3,0)
nn

2
ǭ3(η − ǭ)3 +

(

− g
(2,1)
nn

4
+

3

4
g(3,0)
nn +

Tr g(2,1)

8

)

ǭ2(η − ǭ)4 (A.13)

+

(

− g
(2,1)
nn

3
+

g
(3,0)
nn

2
+

Tr g(2,1)

4

)

ǭ(η − ǭ)5

+

(

Tr g(2,1)

8
+

Tr g(0,3)

12
+

g
(3,0)
nn

8
− g

(2,1)
nn

8

)

(η − ǫ)6
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Clearly, we have a property

S−
5 (ǭ, η) = −S+

5 (ǫ = ǭ, η) . (A.14)

For the term S−
7 we find

S−
7 =

4
∑

n=0

h−
n ηn(ǭ − η)7−n , (A.15)

where we have a relation

h−
4 = −h+

4 , (A.16)

h−
3 = −h+

3 − 1

2
g(3,1)
nn ,

h−
2 = −h+

2 − 1

2
g(3,1)
nn ,

h−
1 = −h+

1 − 1

4
g(3,1)
nn ,

h−
0 = −h+

0 − 1

20
g(3,1)
nn .

Since
∫

S2
g
(3,1)
nn = 0 we have that

∫

S2

h−
n = −

∫

S2

h+
n , n = 0, 1, 2, 3, 4 (A.17)

B. Spherical integrals

Calculating integrals over spherical angle coordinates we use that
∫

S2

ninj =
4

3
πδij ,

∫

S2

ninjnknl =
4

15
π(δijδkl + δikδjl + δilδjk) . (B.1)

We use the fact that in three dimensions

Rijkn = gikPjn + gjnPik − gjkPin − ginPjk , Pij = Rij −
1

4
gijR . (B.2)

We then get, introducing A ≡ π∇2R, B ≡ πR2
ij , C ≡ πR2,

∫

S2

g(3,1)
nn = 0 , (B.3)

∫

S2

g(2,2)
nn =

A

10
,

∫

S2

g(4,0)
nn =

B

3
− 5C

48
,

∫

S2

(g(2,0)
nn )2 =

8B

15
− 3C

20
,
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∫

S2

g(2,0)
nn Tr g(2,0) =

C

12
,

∫

S2

g(2,0)
nn Tr g(0,2) =

C

45
− 8B

45
,

∫

S2

(Tr g(2,0))2 =
C

4
,

∫

S2

Tr g(2,0)Tr g(0,2) = −C

9
,

∫

S2

Tr g(0,2)Tr g(0,2) =
4C

135
+

8B

135
,

∫

S2

Tr g(2,2) =
A

6
− 4B

9
+

C

9
,

∫

S2

Tr g(0,4) = −2A

75
+

56B

675
− 4C

225
,

∫

S2

Tr (g(0,2)g(2,0)) = −4B

9
+

C

9
,

∫

S2

Tr (g(2,0)g(2,0)) = 4B − 5C

4
,

∫

S2

Tr (g(0,2)g(0,2)) =
28B

135
− 2C

45
.
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